X-PressMatter Group' IHPP PAS

Soft  Matter  Blog

  1. en

Discover the secrets of Soft Matter with us!

We invite you to join us in this scientific adventure !!!

MORE  click here

[1]  Aleksandra Drozd-Rzoska, Universal behaviour of the apparent fragility in ultraslow glass forming systems

                                                                                                                                                       Scientific Reports 9, 6816 (2019)

 

[2] Aleksandra Drozd-Rzoska,  Pressure-related universal previtrous beahaviour of the structural relaxation time and apparent fragility.  

                                                                                                                                                          Frontiers in  Materials: Glass Sci. 6, 103 (2019)

 [3] Aleksandra Drozd-Rzoska, Sylwester J. Rzoska, Szymon Starzonek New scaling paradigm for dynamics in glass-forming systems, 

                                                                                                                                       Progress in Materials Science Volume 134, 101074 (2023)

 

MODEL here [3]

MODEL here [2]

MODEL here [1]

 

 

NEW Cognitive Gate for Glass Transition Models !??

PHYSICS of GLASS FORMERS

The universality of the proposed above relations are experimentally evidence for the set set of glass forming systems.

The extended, comprehensive discussion of issues related to the previtreous dynamics (models showed above) is presented in the paper published in Progress in Materials Science (2023) 

 

This paper contains the discussion of the temperature and pressure evolutions.

 

It also includes NEW HYBRID EQUATION for portraying unique changes of viscosity or relaxation time in Glass Forming Systems showing so-called inflection phenomena appearing on compressing:

In 2019 Aleksandra DROZD-RZOSKA derived the equations showing that the temperature and pressure evolutions of relaxation time 

or viscosity follow the universalpretransitional anomaly pattern.

It also includes the ultimate portrayal of pressure related inflection phenomenom: 

link [5]

link [6]

PHYSICS of SEMICONDUCTORS    

CLICK HERE   :

Note that this model includes Negative Pressures Domain, showing that for instance in silicone there is Tm(P) maximum

hidden in this "mystic", isotropically stretched domain.

PHYSICS of SEMICONDUCTORS    

 

Searching Universal Scaling Pattern 

The mentioned relation seems to be the solution to the cognitive puzzle and opens the gate to NEW SOLUTIONS for "materials engineering under pressure" applications.

MODEL here [4]

A. Drozd-Rzoska

Tm

Tm

Tg

This NEW RELATION remains valid both for the glass temperature         and the melting temperature          

The NEW RELATION, matched with the derivative-based implementation protocol developed by Aleksandra Drozd-Rzoska [4,5], 

introduces the NOVEL DESCRIPTION PATTERN for the melting temperature vs. pressure behaviour.

 

 

 

 

 

     In today's World, the insight into properties of the semiconductors materials is essential for the semiconductor industry.

Gallium Nitride is considered the next generation material for advanced semiconductor's implementations.

The pressure dependence of the melting temperature is of the primary importance here.

In references [4,5} the long-standing puzzle regarding this issue has been solved. 

 

 

This paper also offers the coherent explanation of the behaviour in Germanium (Ge), silicon (Si) and Gallium Nitride (GaN).

GaN is considered the most criticaly important material, nowadays. 

[4]  Aleksandra Drozd-Rzoska, Pressure dependence of the glass temperature in supercooled liquids  

                                                                                                                                                    Phys. Rev. E 72, 041505 (2005)

[5]  Aleksandra Drozd-Rzoska, et al. On the pressure evolution of the melting temperature and the glass transition temperature.                                                                                                                                                                       J. Non-Cryst. Solids 353, 3915-3923 (2007) 

[6]  Sylwester Porowski et al. The challenge of decomposition and melting of gallium nitride under high pressure and high temperature                                                                                                                                                Journal of Physics and Chemistry of Solid 85 (2015)

[7]  Aleksandra Drozd-Rzoska et al. Pressure Evolution of Glass Transition Temperature in LiFePO4                                                                                                                                                                                                                              J. Phys. Chem. Lett. , 13, 7269−7272 (2022)

 

The above equation proposed by                                             for the PRESSURE dependence of the melting temperature         

has been subsequently explored in several reports on SEMICONDUCTORS, namely:

Note that this model includes Negative Pressures Domain, showing that for instance in silicone there is Tm(P) maximum

hidden in this "mystic", isotropically stretched domain.

PHYSICS of SEMICONDUCTORS    

 

Searching Universal Scaling Pattern 

The NEW RELATION seems to be the solution to the cognitive puzzle and opens the gate to NEW SOLUTIONS for "materials engineering under pressure" applications.

MODEL here [4]

Tm

Tg

This NEW RELATION remains valid both for the glass temperature         and the melting temperature         . 

The NEW RELATION, matched with the derivative-based implementation protocol developed by Aleksandra Drozd-Rzoska [4,5], 

introduces the NOVEL DESCRIPTION PATTERN for the melting temperature vs. pressure behaviour.

 

 

 

 

 

     In today's World, the insight into properties of the semiconductors materials is essential for the semiconductor industry.

Gallium Nitride is considered the next generation material for advanced semiconductor's implementations.

The pressure dependence of the melting temperature is of the primary importance here.

In references [4,5} the long-standing puzzle regarding this issue has been solved. 

 

 

This paper also offers the coherent explanation of the behaviour in Germanium (Ge), silicon (Si) and Gallium Nitride (GaN).

GaN is considered the most criticaly important material, nowadays. 

Mentioned above Drozd-Rzoska equation has been subsequently explorated in the following reports:

[4]  Aleksandra Drozd-Rzoska, Pressure dependence of the glass temperature in supercooled liquids  

                                                                                                                                              Phys. Rev. E 72, 041505 (2005)

[5]  Aleksandra Drozd-Rzoska, et al. On the pressure evolution of the melting temperature and the glass transition temperature.                                                                                                                                                                  J. Non-Cryst. Solids 353, 3915-3923 (2007) 

[6]  Sylwester Porowski et al. The challenge of decomposition and melting of gallium nitride under high pressure and high temperature                                                                                                                                            Journal of Physics and Chemistry of Solid 85 (2015)

 

 

Note that this model includes Negative Pressures Domain, showing that for instance in silicone there is Tm(P) maximum

hidden in this "mystic", isotropically stretched domain.

PHYSICS of SEMICONDUCTORS    

 

Searching Universal Scaling Pattern 

The mentioned relation seems to be the solution to the cognitive puzzle and opens the gate to NEW SOLUTIONS for "materials engineering under pressure" applications.

MODEL here [4]

Tm

Tg

This NEW RELATION remains valid both for the glass temperature         and the melting temperature         . 

The NEW RELATION, matched with the derivative-based implementation protocol developed by Aleksandra Drozd-Rzoska [4,5], 

introduces the NOVEL DESCRIPTION PATTERN for the melting temperature vs. pressure behaviour.

 

 

 

 

 

     In today's World, the insight into properties of the semiconductors materials is essential for the semiconductor industry.

Gallium Nitride is considered the next generation material for advanced semiconductor's implementations.

The pressure dependence of the melting temperature is of the primary importance here.

In references [4,5} the long-standing puzzle regarding this issue has been solved. 

 

 

This paper also offers the coherent explanation of the behaviour in Germanium (Ge), silicon (Si) and Gallium Nitride (GaN).

GaN is considered the most criticaly important material, nowadays. 

[4]  Aleksandra Drozd-Rzoska, Pressure dependence of the glass temperature in supercooled liquids  

                                                                                                                                              Phys. Rev. E 72, 041505 (2005)

[5]  Aleksandra Drozd-Rzoska, et al. On the pressure evolution of the melting temperature and the glass transition temperature.                                                                                                                                                                  J. Non-Cryst. Solids 353, 3915-3923 (2007) 

[6]  Sylwester Porowski et al. The challenge of decomposition and melting of gallium nitride under high pressure and high temperature                                                                                                                                            Journal of Physics and Chemistry of Solid 85 (2015)

MORE  click here

from SOFT MATTER DYNAMICS

to GLOBAL POPULATION EVOLUTION 

[8]  Sylwester J. Rzoska, Pressure Kerr effect and the nonlinear dielectric effect on approaching the critical consolute point.  

                                                                                                                                      Phys. Rev. E Vol. 48, Number 2 (1993) 

[9]  Aleksandra Drozd-Rzoska, et al.,  Nonlinear dielectric effect in supercritical diethyl ether.                                                                                                                                                                                                                               J. Chem. Phys. Vol. 141, Issue 9 (2014)

 

 

 

NEW Grand Critical Universality is Approaching !??

        In 2014, Aleksandra Drozd-Rzoska, Sylwester J. Rzoska, and J. C. Martinez-Garcia experimentally and analytically extended the range of universality to the liquid-gas critical point case.

In 2022, Aleksandra Drozd-Rzoska, Sylwester J. Rzoska et alshowed the basis for a model combining all the above systems with pretransitional effect in orientationally disordered crystals (ODIC) from the family of plastic crystals.  

    The latter means that the Grand Universal Model emerges, combining the mentioned, apparently diverse physical systems and methods. The mystery started by Piekara (1936, Rydzyna) and the cognitive puzzle has been finally assembled also in Poland (1993-2022).

               But the universality can be even much broader and related to the impact of uniaxiality on mystic topological criticality.

               It means New Grand Critical Universality, which can penetrate many fields, also beyond physics.

MODEL here [5]

 In 1936 Arkadiusz Piekara discovered an extremely strong increase in the nonlinear dielectric effect (NDE - change in dielectric

constant in a strong electric field) when approaching the critical point in solutions with limited miscibility. 

Over the next 57 years, many experimental studies were published on this topic, not only for NDE studies, but also for Kerr Effect. Inconsistency of critical exponents obtained theoretically and experimentally was observed, and no common pattern was obtaine, although it might seem that such a pattern is obvious, as evidenced by the achievements of the Physics of Critical Phenomena 

(Nobel Prize 1981).

 This puzzle discrepancy between experiment and theory was explained in 1993 by Sylwester J. Rzoska a NEW MODEL,

introducing so-called ‘mixed criticality’, which provided a universal description of NDE, the Kerr Effect, and the intensity of scattered light in SOLUTIONS with LIMITED MISCIBILITY, also in  ISOTROPIC PHASE of LIQUID CRYSTALS. 

 

This MODEL, proposed by Sylwester J. RZOSKA, found the enthusiastic interest of Prof. Pierre Gilles de Gennes (Nobel Prize 1991)

long evening discussion after the Congress of Societa Fisica Italiana (1991).            

PHYSICS of CRITICAL PHENOMENA

* 1. Popularization of knowledge, especially regarding Soft Matter Physics and the impact of High Pressure 

* 2. Promoting achievements of young scientists  associated with the X-PressMatter IHPP PAS Laboratory

* 3. Promoting knowledge about personalities of the world of science

* 4. Supporting co-organization/ organization of the "Show Yourself in Science" Workshop & International Seminar on Soft Matter

This WEBSITE was created to realize the following, main  GOALS:

Soft Matter systems have common features, such as the dominance of elements or local structures on the mesoscale, combined with their relatively weak interactions, which turns out to be sufficient to obtain a tendency to self-organize with even a small change in parameters. This additionally leads to extraordinary sensitivity to even minor endogenous and exogenous factors, e.g., nanoparticles and pressure. In the case of the latter, relatively low pressures P~1 GPa, or even much lower ones, can lead to phases/states with exotic features, often persisting after decompression.

Worth stressing, that for "classical hard matter" systems, a pressure similar to that at the Earth's core (~300 GPa) is typically required, and the resulting "exotic" properties most often disappear upon decompression.

ThWebWave website builder was used to create  the websites

Aleksandra Drozd-Rzoska, Universal behavior of the apparent fragility in ultraslow glass forming systems, Scientific Reports 9, 6816 (2019).

Aleksandra Drozd-Rzoska,  Pressure-related universal previtreous behavior of the structural relaxation time and apparent fragility, Frontiers in Materials: Glass Sci. 6, 103 (2019).