X-PressMatter Group' IHPP PAS

Soft  Matter  Blog

  1. en

Discover the secrets of Soft Matter with us!

27 maja 2024

Phase Equilibria and Critical Behavior in Nematogenic MBBA—Isooctane Monotectic-Type Mixtures.

The report presents studies in 4′-methoxybenzylidene-4-n-butylaniline (MBBA) and isooctane (Sol) mixtures, for which the monotectic-type phase diagram was found. There are two biphasic regions (i) for the low (TP1), and (ii) high (TP2) concentrations of isooctane. For both domains, biphasic coexistence curves’ have been discussed and parameterized. For TP2 it is related to the order parameter and diameter tests. Notable is the anomalous mean-field type behavior near the critical consolute temperature. Regarding the isotropic liquid phase, critical opalescence has been detected above both biphasic regions. For TP2 it starts ca. 20 K above the critical consolute temperature. It is classic (mean-field) above TP1 and non-classic above the TP2 domain. The long-standing problem regarding the non-critical background effect was solved to reach this resultS.

* 1. Popularization of knowledge, especially regarding Soft Matter Physics and the impact of High Pressure 

* 2. Promoting achievements of young scientists  associated with the X-PressMatter IHPP PAS Laboratory

* 3. Promoting knowledge about personalities of the world of science

* 4. Supporting co-organization/ organization of the "Show Yourself in Science" Workshop & International Seminar on Soft Matter

This WEBSITE was created to realize the following, main  GOALS:

Soft Matter systems have common features, such as the dominance of elements or local structures on the mesoscale, combined with their relatively weak interactions, which turns out to be sufficient to obtain a tendency to self-organize with even a small change in parameters. This additionally leads to extraordinary sensitivity to even minor endogenous and exogenous factors, e.g., nanoparticles and pressure. In the case of the latter, relatively low pressures P~1 GPa, or even much lower ones, can lead to phases/states with exotic features, often persisting after decompression.

Worth stressing, that for "classical hard matter" systems, a pressure similar to that at the Earth's core (~300 GPa) is typically required, and the resulting "exotic" properties most often disappear upon decompression.

ThWebWave website builder was used to create  the websites