X-PressMatter Group' IHPP PAS

Soft  Matter  Blog

  1. en

Discover the secrets of Soft Matter with us!

27 maja 2024

Dynamics and Pretransitional Effects in C60 Fullerene Nanoparticles and Liquid Crystalline Dodecylcyanobiphenyl (12CB) Hybrid System.

The report shows the strong impact of fullerene C60 nanoparticles on phase transitions and complex dynamics of rod-like liquid crystal dodecylcyanobiphenyl (12CB), within the limit of small concentrations. Studies were carried out using broadband dielectric spectroscopy (BDS) via the analysis of temperature dependences of the dielectric constant, the maximum of the primary loss curve, and relaxation times. They revealed a strong impact of nanoparticles, leading to a ~20% change of dielectric constant even at x = 0.05% of C60 fullerene. The application of the derivative-based and distortion-sensitive analysis showed that pretransitional effects dominate in the isotropic liquid phase up to 65 K above the clearing temperature and in the whole Smectic A mesophase. The impact of nanoparticles on the pretransitional anomaly appearance is notable for the smectic–solid phase transition. The fragility-based analysis of relaxation times revealed the universal pattern of its temperature changes, associated with scaling via the “mixed” (“activated” and “critical”) relation. Phase behavior and dynamics of tested systems are discussed within the extended Landau–de Gennes–Ginzburg mesoscopic approach.

* 1. Popularization of knowledge, especially regarding Soft Matter Physics and the impact of High Pressure 

* 2. Promoting achievements of young scientists  associated with the X-PressMatter IHPP PAS Laboratory

* 3. Promoting knowledge about personalities of the world of science

* 4. Supporting co-organization/ organization of the "Show Yourself in Science" Workshop & International Seminar on Soft Matter

This WEBSITE was created to realize the following, main  GOALS:

Soft Matter systems have common features, such as the dominance of elements or local structures on the mesoscale, combined with their relatively weak interactions, which turns out to be sufficient to obtain a tendency to self-organize with even a small change in parameters. This additionally leads to extraordinary sensitivity to even minor endogenous and exogenous factors, e.g., nanoparticles and pressure. In the case of the latter, relatively low pressures P~1 GPa, or even much lower ones, can lead to phases/states with exotic features, often persisting after decompression.

Worth stressing, that for "classical hard matter" systems, a pressure similar to that at the Earth's core (~300 GPa) is typically required, and the resulting "exotic" properties most often disappear upon decompression.

ThWebWave website builder was used to create  the websites